
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/306323370

Open-source meteor detection software for low-cost single-board computers

Conference Paper · June 2016

CITATIONS

0
READS

647

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Faint meteor detection in EMCCD video View project

Telescopic meteors View project

Denis Vida

The University of Western Ontario

55 PUBLICATIONS 95 CITATIONS

SEE PROFILE

Damir Segon

41 PUBLICATIONS 114 CITATIONS

SEE PROFILE

Peter Gural

Leidos, Inc.

71 PUBLICATIONS 677 CITATIONS

SEE PROFILE

Robert Cupec

University of Osijek

41 PUBLICATIONS 239 CITATIONS

SEE PROFILE

All content following this page was uploaded by Denis Vida on 20 August 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/306323370_Open-source_meteor_detection_software_for_low-cost_single-board_computers?enrichId=rgreq-c630805964250fb007958e1439cb44c7-XXX&enrichSource=Y292ZXJQYWdlOzMwNjMyMzM3MDtBUzozOTcwOTE3MDU3Njk5ODRAMTQ3MTY4NTQ0ODgxMw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/306323370_Open-source_meteor_detection_software_for_low-cost_single-board_computers?enrichId=rgreq-c630805964250fb007958e1439cb44c7-XXX&enrichSource=Y292ZXJQYWdlOzMwNjMyMzM3MDtBUzozOTcwOTE3MDU3Njk5ODRAMTQ3MTY4NTQ0ODgxMw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Faint-meteor-detection-in-EMCCD-video?enrichId=rgreq-c630805964250fb007958e1439cb44c7-XXX&enrichSource=Y292ZXJQYWdlOzMwNjMyMzM3MDtBUzozOTcwOTE3MDU3Njk5ODRAMTQ3MTY4NTQ0ODgxMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Telescopic-meteors?enrichId=rgreq-c630805964250fb007958e1439cb44c7-XXX&enrichSource=Y292ZXJQYWdlOzMwNjMyMzM3MDtBUzozOTcwOTE3MDU3Njk5ODRAMTQ3MTY4NTQ0ODgxMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-c630805964250fb007958e1439cb44c7-XXX&enrichSource=Y292ZXJQYWdlOzMwNjMyMzM3MDtBUzozOTcwOTE3MDU3Njk5ODRAMTQ3MTY4NTQ0ODgxMw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Denis_Vida?enrichId=rgreq-c630805964250fb007958e1439cb44c7-XXX&enrichSource=Y292ZXJQYWdlOzMwNjMyMzM3MDtBUzozOTcwOTE3MDU3Njk5ODRAMTQ3MTY4NTQ0ODgxMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Denis_Vida?enrichId=rgreq-c630805964250fb007958e1439cb44c7-XXX&enrichSource=Y292ZXJQYWdlOzMwNjMyMzM3MDtBUzozOTcwOTE3MDU3Njk5ODRAMTQ3MTY4NTQ0ODgxMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_University_of_Western_Ontario?enrichId=rgreq-c630805964250fb007958e1439cb44c7-XXX&enrichSource=Y292ZXJQYWdlOzMwNjMyMzM3MDtBUzozOTcwOTE3MDU3Njk5ODRAMTQ3MTY4NTQ0ODgxMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Denis_Vida?enrichId=rgreq-c630805964250fb007958e1439cb44c7-XXX&enrichSource=Y292ZXJQYWdlOzMwNjMyMzM3MDtBUzozOTcwOTE3MDU3Njk5ODRAMTQ3MTY4NTQ0ODgxMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Damir_Segon?enrichId=rgreq-c630805964250fb007958e1439cb44c7-XXX&enrichSource=Y292ZXJQYWdlOzMwNjMyMzM3MDtBUzozOTcwOTE3MDU3Njk5ODRAMTQ3MTY4NTQ0ODgxMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Damir_Segon?enrichId=rgreq-c630805964250fb007958e1439cb44c7-XXX&enrichSource=Y292ZXJQYWdlOzMwNjMyMzM3MDtBUzozOTcwOTE3MDU3Njk5ODRAMTQ3MTY4NTQ0ODgxMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Damir_Segon?enrichId=rgreq-c630805964250fb007958e1439cb44c7-XXX&enrichSource=Y292ZXJQYWdlOzMwNjMyMzM3MDtBUzozOTcwOTE3MDU3Njk5ODRAMTQ3MTY4NTQ0ODgxMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Peter_Gural?enrichId=rgreq-c630805964250fb007958e1439cb44c7-XXX&enrichSource=Y292ZXJQYWdlOzMwNjMyMzM3MDtBUzozOTcwOTE3MDU3Njk5ODRAMTQ3MTY4NTQ0ODgxMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Peter_Gural?enrichId=rgreq-c630805964250fb007958e1439cb44c7-XXX&enrichSource=Y292ZXJQYWdlOzMwNjMyMzM3MDtBUzozOTcwOTE3MDU3Njk5ODRAMTQ3MTY4NTQ0ODgxMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Leidos_Inc?enrichId=rgreq-c630805964250fb007958e1439cb44c7-XXX&enrichSource=Y292ZXJQYWdlOzMwNjMyMzM3MDtBUzozOTcwOTE3MDU3Njk5ODRAMTQ3MTY4NTQ0ODgxMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Peter_Gural?enrichId=rgreq-c630805964250fb007958e1439cb44c7-XXX&enrichSource=Y292ZXJQYWdlOzMwNjMyMzM3MDtBUzozOTcwOTE3MDU3Njk5ODRAMTQ3MTY4NTQ0ODgxMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert_Cupec?enrichId=rgreq-c630805964250fb007958e1439cb44c7-XXX&enrichSource=Y292ZXJQYWdlOzMwNjMyMzM3MDtBUzozOTcwOTE3MDU3Njk5ODRAMTQ3MTY4NTQ0ODgxMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert_Cupec?enrichId=rgreq-c630805964250fb007958e1439cb44c7-XXX&enrichSource=Y292ZXJQYWdlOzMwNjMyMzM3MDtBUzozOTcwOTE3MDU3Njk5ODRAMTQ3MTY4NTQ0ODgxMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Osijek?enrichId=rgreq-c630805964250fb007958e1439cb44c7-XXX&enrichSource=Y292ZXJQYWdlOzMwNjMyMzM3MDtBUzozOTcwOTE3MDU3Njk5ODRAMTQ3MTY4NTQ0ODgxMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert_Cupec?enrichId=rgreq-c630805964250fb007958e1439cb44c7-XXX&enrichSource=Y292ZXJQYWdlOzMwNjMyMzM3MDtBUzozOTcwOTE3MDU3Njk5ODRAMTQ3MTY4NTQ0ODgxMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Denis_Vida?enrichId=rgreq-c630805964250fb007958e1439cb44c7-XXX&enrichSource=Y292ZXJQYWdlOzMwNjMyMzM3MDtBUzozOTcwOTE3MDU3Njk5ODRAMTQ3MTY4NTQ0ODgxMw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Proceedings of the IMC, Egmond, 2016 307

Open-source meteor detection software
for low-cost single-board computers

Denis Vida1��'DULR�=XERYLü2��'DPLU�âHJRQ3, Peter Gural4 and Robert Cupec5

1 $VWURQRPLFDO�6RFLHW\�³$QRQ\PXV´��%��5DGLü�����������9DOSRYR��&URDWLD
Faculty of Electrical Engineering, University of Osijek, Kneza Trpimira 2B, 31000 Osijek, Croatia

denis.vida@gmail.com

2 Croatian Meteor Network
dario@zubovic.email

3 Astronomical Society Istra Pula, Park Monte Zaro 2, 52100 Pula, Croatia
damir.segon@pu.htnet.hr

4 Gural Software Development, 351 Samantha Drive, Sterling, Virginia, USA 20164
peter.s.gural@leidos.com

5 Faculty of Electrical Engineering, University of Osijek, Kneza Trpimira 2B, 31000 Osijek, Croatia
rcupec@etfos.hr

This work aims to overcome the current price threshold of meteor stations which can sometimes deter meteor
enthusiasts from owning one. In recent years small card-sized computers became widely available and are used for
numerous applications. To utilize such computers for meteor work, software which can run on them is needed. In
this paper we present a detailed description of newly-developed open-source software for fireball and meteor
detection optimized for running on low-cost single board computers. Furthermore, an update on the development
of automated open-source software which will handle video capture, fireball and meteor detection, astrometry and
photometry is given.

1 Introduction

With the advent of low-cost sensitive video security
cameras, amateur meteor enthusiasts quickly embraced
this technology and noted its potential for meteor
surveillance (Gural and âHJRQ�� ������� 7KH� WHFKQRORJ\�
has proven capable of delivering quality data, such that a
meteorite recovery was possible based on an amateur
PHWHRU� QHWZRUN� �%RURYLþND� HW� DO��� ������ XVLQJ� VXFK�
cameras. As the price of these cameras has continued to
decline, falling below 50 USD (Samuels et al., 2014), the
main price component of a meteor station became the
computer for recording and processing the data. As the
computer¶s price is an order of magnitude larger than that
of a single camera, the question of replacing it with a
cheaper alternative naturally arises. The possible
candidates were found in the form of low-cost single-
board computers. A set of these computers were tested in
�=XERYLü�HW�DO���������DQG�LW�ZDV�FRQFOXGHG�WKDW�D�YLDEOH�
alternative exists, namely the Raspberry Pi 2 device
which seemed affordable and powerful enough to serve
the purpose. Furthermore, it was concluded that a low-
cost meteor station using the Raspberry Pi 2 computer
could be built for about 150 USD, including all
components. While the hardware is not the main topic of
this paper, it is worth mentioning that a new generation of
the Raspberry Pi has recently been released, the
Raspberry Pi 3 which offers up to 50% more computing
power1 than the previous generation. Although the
hardware options are plentiful, there were no software

1 https://www.raspberrypi.org/magpi/raspberry-pi-3-specs-
benchmarks/

solutions capable of running on such devices. Their ARM
CPU architecture and the Unix-based operating system
create a unique problem, where to successfully compile
and use meteor processing pipeline software, one needs to
obtain its source code and adapt it to run under such a
V\VWHP�FRQILJXUDWLRQ��7KH�ZRUN�LQ��=XERYLü�HW�DO���������
presented software which works on Raspberry Pi 2
devices, records video from the camera, compresses it
into the CAMS FTP format (Gural, 2011) and performs a
rudimentary real-time fireball detection.

In this paper new and improved algorithms are presented
which include complete procedures for real-time fireball
detection, meteor detection, star extraction and data
calibration. All software is open-source and available on
the project's GitHub page2. The authors believe that
meteor surveillance is a matter of great importance, and
as such it should be available to all. By making the
software open-source, anyone can use the code,
contribute to it and more experienced contributors can
improve it significantly. The Python programming
language was chosen as the main development language,
while the computationally intensive parts of the code are
written in C++ . The choice of this combination of
programming languages is common for astronomical
purposes3 in the recent years.

2 https://github.com/CroatianMeteorNetwork/RMS
3 http://python-in-astronomy.github.io/

308 Proceedings of the IMC, Egmond, 2016

Figure 1 ± A block diagram of the developed software.

2 Software overview

An overview of the developed software is shown on
Figure 1.

The raw frames from the grabber are compressed in the
CAMS FTP compression format (Gural, 2011). The
compression procedure compresses 256 raw video frames
into 4 images: maximum pixel value image (maxpixel),
average pixel value image excluding the maximum
(avepixel), standard deviation pixel value image
excluding the maximum (stdpixel) and an image which
tracks the time of the occurrence of the maximum pixel
value (maxframe). The time, i.e. the frame number of the
maximum pixel value is encoded as a byte valued image
level. If a certain pixel has several maximum values
occurring at different frames, the frame number which is
stored in the maxframe image is randomly chosen to
distribute noise peaks uniformly in time.

Figure 2 ± Fireball maxpixel image (top) and several
reconstructed frames showing compression artifacts (below).

While the aforementioned compression procedure works
sufficiently enough to preserve meteors of moderate
brightness, certain problems can occur with very bright
fireballs. As the fireball saturates the CCD sensor and
leaves a path of saturated values along its track, the
compression algorithm only takes a single saturated value
encoded in time. The effect of this is visible in Figure 2.
The top of the figure shows the maxpixel image, while

the bottom shows several reconstructed video frames. It
can be seen that the reconstructed frames suffer from
compression artifacts which can impair the precision of
the centroid determination as information about the real
position of the fireball is lost.

To counter this problem a real-time fireball detector was
developed to enable saving the raw video frames while
they are still in the temporary memory buffer. Fireballs
have orders of magnitude higher signal-to-noise ratio in
respect to the background than meteors of moderate
brightness, and thus the authors believe that a dedicated
fireball detector provides more consistent results than a
combined approach. Furthermore, a fireball detection
algorithm is simpler and faster, thus satisfying the real-
time requirement. Fainter and moderate brightness
meteors are detected on the compressed data with more
elaborated methods offline, as they generally do not
suffer from compression artifacts.

Besides fireball detection, to make a low-cost meteor
station competitive with the existing solutions, an option
to detect fainter meteors is highly desirable. As there are
constraints on the computing power, the algorithm needs
to be fast, reasonably robust and sensitive enough to
detect meteors not detected by the fireball detector. To
consider how fast the algorithm actually must be, Worst
Case Execution Time and the maximum average time
which can be spent per each image for meteor detection
must be calculated.

To use the full power of the RPi computer, all 4 of its
cores are employed. The capturing process has the
highest priority and it needs to run in real-time, thus one
core is completely dedicated to this task. Two cores are
dedicated to video compression and real-time fireball
detection. The compression and fireball detection process
is serial, meaning that fireball detection is run after the
compression. Thus each of these two cores run the same
serial process, but the input data stream is alternated

Proceedings of the IMC, Egmond, 2016 309

between the two, to double the available processing time
per single serial procedure. The one remaining core runs
star extraction and meteor detection. Once the capture
process is finished, all 4 cores run star extraction and
meteor detection procedures. Finally, after the detection
procedures finishes, astrometry and photometry
procedures are performed.

With the core utilization laid out, the total available
processing time for star extraction and meteor detection
can be calculated. The longest night of the year at latitude
50° north is about 16 hours, which translates into 5625
CAMS format FF files at 25FPS and 256 frames per file.
With the proposed core utilization, during the longest
night the algorithm will have 16 hours available during
the night on one core, and the remaining 8 hours on 4
cores. Thus the total computation available is 48 hours
(not taking into account system housekeeping and post-
processing). This translates to the maximum average time
which the algorithm can spend on one FF file of about 30
seconds. Furthermore, taking into account that the
Raspberry Pi 2 is at least an order of magnitude less
powerful than contemporary normal-sized computers, the
average maximum time the algorithm running on a
normal-sized computer can spend on each image is
around 3 second. As this time is quite short, the algorithm
should make an effort to reduce the number of analyzed
files early on.

3 Fireball detector

An initial version of the fireball detection algorithm was
SUHVHQWHG� LQ� �=XERYLü� HW� DO��� ������� ,Q� WKLV� SDSHU� DQ�
improved version of the algorithm is presented - the
algorithm was re-implemented in Cython4 for faster
execution and input parameters were fine tuned.
Furthermore, the algorithm is discussed in more detail
below.

The input data to the detector are the FTP compressed file
and raw video frames. To detect significant rises in image
intensity over the background, image thresholding is
performed with the following operation:

6DNAODKH@:I=Tá =RCá OP@@AR;

L � \SDEPAá �:��� P =RC E -5 ® OPP@AR;�¬�:��� P vr;

>H=?Gá KPDANSEOA

The K1 parameters determines how many standard
deviations above the background level the maximum
intensity must be to be considered to be part of the
fireball, i.e. a white pixel. The chosen value was K1 = 4,
based on numerous experiments on fireball images.
Furthermore, the minimum intensity level of the pixel
must be 40. Figure 3 shows the influence of the varying
value of the K1 parameter. As it can be seen on the given
figure, values of K1 below 4 produce too many white
pixels. Values above 4 can produce black regions in the
middle of the fireball ± these are caused by the very high
standard deviation values in the middle of the fireball.

4 http://cython.org/

When these high values are multiplied by the K1
parameter of a higher value, the =RC E -5 ® OPP@AR
expression can exceed the maximum digitization value of
255, thus making the maximum image value unable to
pass this threshold. If one requires such a high threshold,
it is possible to clip the calculated value to 254 and thus
ensure saturated pixels get through. As this would
introduce a slight overhead in computation time, this
feature was not implemented.

Following this procedure, the image pixels are now either
white (pixels of interest) or black (background). As the
CAMS FTP format image contains information about the
occurrence of every maximum pixel value, the
thresholded image can be shown as a 3D point cloud, XY
components representing the image axes, and Z
component representing the time axis. The resulting 3D
point cloud can be seen in inset a) of Figure 4. To further
reduce the noise and reduce the total number of points of
interest, a subsampling procedure is performed. The point
cloud is sampled by 16 × 16 × 256 bins. A secondary
thresholding is performed which is based on counting the
number of points in each bin. If the number of points is
less than 8, the bin is rejected. The result is shown in
inset b) of Figure 4. As fireballs can often have bright
flashes, an algorithm which removes the flashes (i.e.
slices at the time axis which have considerably more
points than average) is applied to the 3D point cloud. An
example of such 3D point cloud is given on the inset b) of
Figure 4, where a plane of points at frame 90 can be
noticed. The flash filter looks for such planes in the data,
i.e. the frames when the fireball 3D point cloud has at
least 10x more points than the median number of points
per frame. The frame is removed and the result is shown
in inset c) of Figure 4.

After the described preprocessing, it is obvious from
Figure 4 inset c) that the fireball is represented as a line
segment in 3D space. Thus a new line segment detection
algorithm has been independently developed and
implemented in Cython. First, the points are sorted by
their respective frames. Then the algorithm pairs each
point with each other to hypothesize a line. Each
hypothesized line is tested for the number of points in its
neighborhood. The neighborhood is defined as cylinder
around the hypothesized line (with a fixed radius). The
algorithm evaluates each hypothesized line by the number
of points and their distances from the line by producing a
weighted score. The closer the point is to the line, the
higher the score it has. Furthermore, if the algorithm
determines that there is a discontinuity in the
concentration of points, that particular hypothesized line
is rejected as the goal is to find compact line segments.
The line with the best cumulative score is chosen, its
points are removed from the point cloud and the
algorithm runs recursively until all acceptable lines are
found. The pseudo code of the algorithm, as well as the
description of the input parameters, are given in Code
segment A. The line segment detection algorithm has a
time complexity of O(N3) in the worst case, and given

310 Proceedings of the IMC, Egmond, 2016

Figure 3 ± Thresholding the fireball with various values of K1.

Figure 4 ± Steps in the fireball detection thresholding procedure.

the restrictions on the computing time available, the total
number of points which are fed into the algorithm was
limited to 1000. If the point cloud contains more points,
1000 points are randomly chosen. In principle, the newly
developed line segment detector is very similar to
RANSAC (Fischler and Bolles, 1981), although it contains
several key differences which enable it to search
specifically for line segments, in contrast to unbounded
lines. After the fireball is located, raw video frames
containing the fireball are pulled from memory and are
stored on disk for later use.

The performance of the fireball detector was evaluated on
about a hundred examples of fireball images from the
Croatian Meteor Network archives. The brightness of
successfully detected events ranges from fireballs which
saturated half the image, to 0th magnitude meteors. After
examining the results, the authors have concluded that the
fireball detector is robust and suitable its purpose.

4 Meteor detector

To reduce the total processing time, the star extraction
procedure (described in the next section) is run before
meteor detection. If the number of detected stars is too
low, meaning that the sky is not clear, the meteor
detection algorithm will not be run at all on the given
image. When the skies are clear, the processing flow will
include the detection procedure.

As the CAMS compression format saves the maximum
and the average value of each pixel during 256 frames, as
well as its standard deviation, thresholding the image to
find events brighter than the average is done by applying
the following operation on the image:

6DNAODKH@:I=Tá =RCá OP@@AR;

L � \SDEPAá ���� P =RC E -5 ® OPP@AR E ,5
>H=?Gá KPDANSEOA

K1 is a scaling factor which determines how many
standard deviations above average the event should be,
while J1 is an absolute factor which adds to the total level
threshold by adding a minimum background level. The
combination of factors K1 = 1.7, J1 = 9 proved to be
optimal for discriminating meteors from the background
noise.

After the image is thresholded, the algorithm checks the
ratio between the thresholded and the total area of the
image. If the thresholded part covers more than 5% of the
image, the image is rejected. The reason for this is that
moonlit clouds can often cause many above average pixel
exceedances, which in turn slows down the algorithm.

As one compressed image contains information of about
256 frames, this allows reconstructing the whole video
from the compressed file. To reduce noise, the whole
256-frame block is not analyzed at once, but only a 64
frame ³windoẃ is reconstructed from the FF file. The

Proceedings of the IMC, Egmond, 2016 311

Figure 5 ± Frame reconstruction and frame ³windowś . The meteor appears on frames from 211 to 228.

starting frame of each reconstructed window is shifted by
32 frames, producing 7 such windows covering frame
ranges of 1±64, 32±96, 64±128, 96±160, 128±192,
160±224, and 192±256, thus the windows are overlapped
LQ� WLPH� WR� DYRLG� ³OHDNDJH´� RI� PHWHRUV� VSDQQLQJ�
processing windows. The mentioned ³windoẃ is not a
set of 64 actual frames, but the maxpixel of the short
window block. Figure 5 illustrates the described
SURFHGXUH�DQG�VKRZV�LQGLYLGXDO�IUDPH�³ZLQGRZV´�

On each such window a set of image morphological
operations (Gonzales and Woods, 2008) is performed.
First, morphological cleaning is performed; a process
which removes isolated pixels. This operation removes
most of the noise on the image. Figure 6 illustrates the
described procedure.

0 0 0 0 0 0

0 1 0 Æ 0 0 0

0 0 0 0 0 0

Figure 6 ± Morphological cleaning.

Then a morphological bridging operation is performed
which connects pixels which are on the opposite sides
and all other pixels are 0. This operation helps to connect
disconnected features on the image, such as broken lines.
Figure 7 illustrates the described procedure for 1 of 4
possible pixel orientations.

0 0 1 0 0 1

0 0 0 Æ 0 1 0

1 0 0 1 0 0

Figure 7 ± Morphological bridging.

After that, a morphological closing is performed. Closing
is a structured filling in of hollow image features which
consists of two sub-operations: morphological dilation
followed by erosion, using the same structuring element
for both operations. This operation helps to fill in all the
possible gaps in the thresholded meteor.

To prepare the image for line identification, all possible
lines must be as thin as possible. Thus a Zhan-Suen
thinning algorithm (Zhang and Suen, 1984) is applied to
the image which skeletonizes the image i.e. makes all
possible meteors on the image to appear as long thin
lines.

Finally, a morphological cleaning is performed again to
remove all noise on the image remaining after thinning.
Now the image is ready to run the line detection
algorithm. Figure 8 shows an example of the maxpixel
image (left), the image after thresholding (middle) and
the image after the complete pre-processing procedure
(right).

The image pre-processing procedure was implemented
due to the peculiar operation of the chosen line finding
algorithm. After a period of experimentation, it was
decided to settle on the Kernel-Based Hough Transform
(KHT) (Fernandes and Oliveira, 2008) due to its superior
speed and performance, which was necessary due to the
low computation power of single board computers. The
authors of the KHT made it open-source which perfectly
aligned with our needs and software development
philosophy. The preprocessed images are fed into the
algorithm and it returns all line candidates on the image.

After all lines have been retrieved on all 64-frame
³windowś , similar lines are identified using the Discrete

312 Proceedings of the IMC, Egmond, 2016

Figure 8 ± Maxpixel image of a meteor (left), thresholded image (middle), image after preprocessing (right).

Fréchet distance (Eiter and Mannila, 1994) as the
similarity measure and are averaged. During the line
segment merging, the exact ³windowś on which the line
appears are tracked, thus the approximate time of the line
appearance is known. In this point the algorithm has a list
of candidate lines which need to be confirmed as meteors.
If this list is empty, meaning no lines satisfying the given
parameters were found, the procedure is aborted and the
image is rejected and it is considered to not contain any
meteors. On the other hand, if there are lines in the list,
the algorithm proceeds to confirm that the found lines
could be meteors.

The next phase of the algorithm determines if the
candidate line contains a possible meteor by determining
if the line propagates through time. First, as the
approximate time of the line appearance is known as a
range of frames between which the candidate line
appeared, this fact is used to reconstruct the ³windoẃ
image using the given frame range. Then a strip of about
50 pixels in width is extracted around the line. In CAMS
FTP format, each pixel has an assigned time component
of its maximum value during the 256 frame period,
meaning that each pixel in the strip is given a time
component. Thus a 3D point cloud is obtained - a line
propagating through time should be a compact line in this
point cloud, thus the same algorithm as the one in fireball
detection is used, although with a different set of
parameters to allow for smaller lines to be detected. The
algorithm determines the exact starting and ending frames
of the propagating line, as well as the true orientation of
the line. Any event shorter than 4 frames (i.e. 0.16
seconds at 25 frames per second) is rejected due to a large
number of such short events detected during cloudy
weather, which can considerably slow down the
algorithm. This also means that all meteors shorter than 4
frames are not detected. In the case of future
improvements in available computational power, this
restriction can be easily lifted.

After the algorithm determines the exact duration (i.e. the
beginning and ending frames) of the event, centroiding is
performed by reconstructing each frame of the event and
again extracting a strip around the event. A center-of-
mass calculation is performed, using pixel intensities as
weights (Berry and Burnell, 2005). As the video camera
employed produces an interlaced signal, a deinterlacing
procedure is performed beforehand ± centroiding is done
separately on odd and even image rows, thus giving a
half-frame time resolution. Finally, the obtained centroids
are filtered by rejecting those which considerably deviate
from the fitted trend line. Figure 9 shows the marked
centroids of the meteor shown on Figure 8. The results of
the detection procedure are written out as a CAMS
FTPdetectinfo file format, so that the results can be
processed with the existing (although proprietary) CAMS
procedures.

Figure 9 ± A detected meteor with marked centroids.

The performance of the meteor detector was evaluated on
about a hundred carefully chosen meteor images. The

Proceedings of the IMC, Egmond, 2016 313

Table 1 ± Comparison of meteor detection performance between the new detector and the CAMS detector.

Type Night ID
No.
files

Total proc.
time (sec)

Time per
file (sec)

Meteors detected False positives

New CAMS New CAMS

1 VIB_20160419 3211 29390 9.15 14 11 53 18

2 OSE_20160417 3269 7770 2.37 0 2 9 61

3 VID_20160417 3263 37100 11.36 0 0 1679 304

4 OSO_20160419 3233 9430 2.91 2 4 36 2941

5 OSE_20160501 2950 2590 0.87 0 0 0 318

 TOTAL 16 17 1777 3642

goal was to sample a wide variety of meteors of varying
brightness, duration and velocity to test the algoriWKP¶V�
GHWHFWLRQ�SHUIRUPDQFH��7KH�DOJRULWKP¶V�SDUDPHWHUV�ZHUH�
tuned until all chosen meteors were successfully detected.

Furthermore, the detector was tested on 5 full nights, each
containing about 3000 individual image files. The night
types were chosen to be representative of the conditions
encountered during the year:

1. A clear and Moonless night with several meteors;
2. A cloudy night with the presence of the Moon with

very few meteors;
3. A night with fast moving clouds with the presence of

the Moon;
4. A rainy night in a light polluted environment,

resulting in visible falling raindrops;
5. A cloudy and stormy night with the presence of

lightning.

The goal of these data was to test the algorithms
robustness and false positive rate. The results were
compared to those obtained by the MeteorScan detector
employed as a part of the CAMS processing pipeline
(Jenniskens et al., 2011) in FTP_CaptureAndDetect
version 1.6 software. The results of comparison for full
nights are given in Table 1.

Compared to the CAMS detector, the total number of
false positives was considerably smaller. It was
discovered that this was caused by the condition that the
detection procedure is run only when a minimum number
of stars is present on the image, thus eliminating most of
the detections on clouds and during daytime. On the other
hand, the new detector produced lots of false positives
when part of the image contained fast moving moonlit
clouds while the other part was clear. This behavior will
be addressed in the future by introducing cloud mitigation
techniques.

The total number of detected meteors was also smaller.
After careful comparison, it was determined that the
missing detections are those meteors shorter than 4
frames in duration (which are automatically rejected by
the new detector) and meteors between the clouds. On the
other hand, during clear nights the new detector
performed similar to the CAMS detector. Real
differences cannot be determined without a detailed
comparison, but it is worth mentioning that in several

cases the new detector detected more meteors than the
CAMS detector (with the detection parameters used by
the Croatian Meteor Network). Furthermore, on all tested
data the algorithm never exceeded the maximum average
processing time per image. The maximum average
processing time per image for the tested nights on the
Raspberry Pi 2 device was about 11.5 seconds, including
both the star extraction and meteor detection.

Although the detection rate was similar to the CAMS
detection procedure, further analysis is needed. But based
on these early results, it can be concluded that under the
circumstances and the given computational power the
newly developed detector is performing satisfactory for
the needs of an amateur meteor enthusiast. Room for
improvement still exists and it is hoped that a more
successful algorithm will be implemented in the future,
most probably the one given in (Gural, 2016).
Furthermore, the algorithm should be tested on even more
data to confirm its performance.

As the system is fully automated by design, a manual
meteor confirmation procedure is not a part of the
processing pipeline. False meteor detections will be
rejected during orbit estimation as they will not form
realizable orbit solutions. Nevertheless, as the results are
CAMS compatible, it is possible to perform manual
confirmation using the available software solutions, such
as the CMN_binViewer (Vida et al., 2014).

5 Star extraction

To astrometrically calibrate the intrinsic (field distortion)
and extrinsic (coordinate transformations) parameters of
the camera, a set of stars from each recorded image is
needed. Thus a robust algorithm for detecting stars on the
recorded FF files was developed. The algorithm takes the
³average pixeĺ image from the FF file and first
calculates the mean intensity of the image. To quickly
check if the algorithm should proceed at all, the mean
image value is compared to a predefined threshold. If the
image is too bright (e.g. an image recorded during the
day), it is rejected. If the image passes this test, the
inverse hyperbolic sine function is applied to all pixels on
the image to adjust levels of the image so that the stars
become more prominent. The maximum image filter (i.e.
morphological erosion) is applied to the image; while on
a copy of the original image a minimum image filter (i.e.
morphological dilation) is applied. The difference of the 2

314 Proceedings of the IMC, Egmond, 2016

images thresholded by a fixed threshold value leaves only
the areas of the image which are considerably brighter
than their background. These peaks are detected and the
center of mass is calculated for each on the original
average pixel image, giving the approximate coordinates
of the candidate stars.

To refine the results, and to better determine if the
candidate is really a star or not, point spread function
(PSF) fitting is performed by fitting a 2D Gaussian
function to an area of 9 × 9 pixels centered around each
candidate star using the least squares regression. The
authors are aware that a 2D Gaussian does not perfectly
represent the real PSF of the star, but for the purposes in
video meteors which have a lower photometric
resolution, a pure Gaussian PSF is assumed. Initial PSF
parameters are approximated beforehand so that real stars
converge quickly to a solution. Thus if the fitting does
not converge in a limited number of iterations, the
candidate is rejected. This procedure has proven to be a
good discriminator between real stars and spurious
detections. Furthermore, if the PSF fitting procedure is
completed successfully, the covariance matrix of the PSF
is evaluated. If the PSF is too narrow, the candidate star
is rejected as a hot pixel (i.e. bright dot defect). Finally,
as a consequence of fitting the PSF, the location of each
star is known very accurately and its precision is on a
subpixel level. The intensity of each star is calculated as a
volume under the fitted PSF.

Finally, the stars found are written in the CAMS
CALSTARS format, so that the calibration procedure can
be done using CAMS-compatible procedures if needed.

The results of the new algorithm were compared to the
results of the CAMS FTP_CalStarExtractor software. It
was concluded that the newly developed algorithm yields
very little false positives, only about 5%, while the
FTP_CalStarExtractor often detects more false positives
than real stars. Furthermore, the proposed algorithm
yields virtually no detections during cloudy weather, thus
its results can be used to determine weather conditions in
the time of recording. When comparing the number of
true positives between the two algorithms, the new
algorithm detects about 90% of stars present in the
CAMS data. The average number of detected stars per
image during the periods of clear skies in the sample
moderate field of view data was about 30. Combining
frames from the same camera over the course of the night
yields an average total number of detected stars in the
tens of thousands.

6 Astrometry and photometry

procedures

To transform the image coordinates of the meteor
detection to celestial coordinates, an astrometric plate
solution of the associated camera is needed. The initial
plate constants (field center, scale, field distortion
parameters) are first manually estimated by knowing the
pointing direction of the camera and its optical properties.
To further refine the plate constants, the detected stars

need to be matched with stars from a star catalog. For this
purpose, the Yale Bright Star Catalog5 is used. To have a
better quality of the solution and to cover a larger part of
the focal plane, stars detected on images all throughout
the night are used. As the total number of all stars in a
single night can be in the tens of thousands, which can be
hazardous for the computational time needed to calculate
an astrometric solution, a random sample of images is
taken where images with more stars have a greater
probability of being chosen. At least 500 stars are needed
to continue with the calibration, the number being chosen
RQ�WKH�EDVLV�RI�ILQGLQJV�LQ��âHJRQ��������

The image coordinates of the chosen stars are
transformed to celestial coordinates using the initial
calibration parameters. The transformed coordinates are
then matched to their nearest neighbors among the
catalog values in celestial coordinates, but only if the
coordinates are closer than a predefined angular distance
threshold. The distance and the direction of the shift
between each of the matched stars are recorded, the
median values are calculated and the correction is applied
to the plate constants. The procedure is repeated by
reducing the angular distance threshold during each
iteration, until the desired match is achieved. The
matching metric is evaluated as a quotient of the standard
deviation of the shift between the detected and catalog
stars and the total number of matched stars. Thus a better
solution is one that yields a smaller value.

Once the initial parameter refinement is complete, a more
elaborate refining of the field center position is performed
using the Nelder-Mead method (Nelder and Mead, 1965).
Right ascension and declination of the center is adjusted
until the algorithm converges to a stable solution ± the
same evaluation method is used as in the initial
refinement procedure. Next, the distortion parameters are
also refined using the same above-mentioned procedures.
The image distortion is estimated by 3rd order
polynomials ZLWK���H[WUD�³UDGLDO�GLVWRUWLRQ´�WHUPV�LQ�ERWK�
X and Y directions, albeit with different coefficient
values:

Bë:Tá U; L T E �=5 E =6T E �=7U E =8T6 E =9TU E =:U6
E =;T7 E =<T6U E ==TU6 E =54U7
E =55T¥T6 E U6 E =56U¥T6 E U6

Bì:Tá U; L U E �>5 E >6T E �>7U E >8T6 E >9TU E >:U6
E >;T7 E ><T6U E >=TU6 E >54U7
E >55T¥T6 E U6 E >56U¥T6 E U6

The extra terms in the polynomials were first used as a
part of the Croatian Meteor Network calibration
procedures, but have been unpublished until now. During
the initial development of the CMN procedures it was
found that the modified polynomials produce smaller
residuals compared to the ordinary 3rd order polynomials.
This hypothesis has been tested again before the final
implementation in this software and it was found that the

5 http://tdc-www.harvard.edu/catalogs/bsc5.html

Proceedings of the IMC, Egmond, 2016 315

proposed equations produce significantly smaller
standard deviations in the fitted star positions than the
ordinary third order polynomials. The theoretical
background behind the reasons of such behavior was not
explored, that will be a topic of some future work.

After the astrometry parameter estimation is done and if
the calibration was successful, a photometric calibration
procedure is performed. Instrumental intensities of
matched stars are compared to the apparent visual
magnitude catalog values of said stars. A regression
procedure is performed to fit the well-known intensity vs.
magnitude function (Berry and Burnell, 2005):

I5 L �Ftäw ���54 %5 E täw ���54 %6 EI6

where m1 is the calculated magnitude, C1 is the input
intensity, while C2 and m2 parameters are fitted from the
abovementioned data. It is worth noting that the
photometric procedures are very basic and with no regard
to spectral sensitivity of the camera. Furthermore, no
correction for saturated pixel values is performed. This
part of the calibration procedure requires further work
and improvement, which is hoped to be done in the
future. Finally, meteor detections are converted from the
image plane coordinates to celestial coordinates using the
estimated plate constants and intensities are converted to
apparent magnitudes.

The results of the proposed astrometric calibration
procedure were compared to the results of the existing
CMN calibration procedure. The new algorithm produced
an order of magnitude better results, although results of
the subsequent runs on the same dataset varied slightly
because of the random sampling of the images from
which the stars are used.

7 Discussion

The authors believe it is worth discussing the benefits
that an automated low-cost meteor station could provide.
Lowering the starting price of a meteor surveillance
system would mean that existing networks could be
easily expanded, as the human resources and a certain
level of expertise exists among already organized groups.
Furthermore, new networks could be easily formed with
very little financial investment, meaning that meteor
science would be available to a wider audience,
especially in less than well-off nations. The total effect
would be a considerable rise in the atmospheric collecting
area and longitudinal coverage. An educational aspect
should also be considered ± students could be introduced
to astronomy, computer and data science by installing
such a system on their school and make them involved in
every step of its operation. Moreover, scientists from
other fields could recognize the practicality of a self-
contained system with a video camera and repurpose it
for their needs, such as bird watching or monitoring
atmospheric phenomena.

If the project is favorably seen by a larger audience
willing to set up a network of such systems, the authors
believe that data produced by this hypothetical network
using open-source software should be publically
available. The usual arguments for keeping the data
closed, such as the cost of the developed system, no
longer justifies not publishing detailed data in this case,
and no time is spent on manual processing as the system
is fully automated. A similar open database exists in the
form of the IMO Fireball Report (Hankey and Perlerin,
2014) and the authors hope that in the future more video
meteor data will be open and the methods of its
generation will become more transparent.

Finally, the benefits of a wide-spread meteor network to
actual meteor science could be immense. Most meter-
scale impactors are not observed optically, as the existing
fireball and meteor networks cover only a fraction of the
sky and most are only detected with non-optical methods
which lack astrometric precision and show certain biases
towards faster objects (Brown et al., 2016). In the recent
years there have been reports of short meteor shower
outbursts which were observed only by one or two meteor
networks, namely the February Eta Draconds (Jenniskens
and Gural, 2011) and April alpha Capricornids (SonotaCo
et al., 2014). These occurrences lead to the question
whether some meteor shower outbursts were not noticed
due to overcast weather or the nonexistence of a meteor
network beneath the skies where the outburst was visible.

8 Conclusion

A complete open-source software solution for video
meteor capture and detection on the RaspberryPi 2
single-board computer has been developed and described
in detail. First, a set of requirements were set which such
a station should meet. Next, real-time compression to
CAMS FTP format and a fireball detection algorithm
were described. Also, a newly-developed meteor
detection algorithm was described and evaluated with the
conclusion that it suits the needs of a low-cost meteor
station. The pseudo code of a line segment detector in a
3D point cloud used by both fireball and meteor detectors
was given. Furthermore, a star extraction algorithm which
uses a Gaussian PSF fitting to stars was developed and
tested with very positive results. Finally, the astrometry
and photometry procedures were implemented and
discussed.

While the individual segments of software described in
this paper performed within the requirements on sample
data, system tests during an actual night of meteor
recording still need to be performed. Also, the software
needs to be made more user-friendly and the
documentation is to be expanded. It is the hope of the
authors that the number of contributors to this project will
rise in the future and that the developed system will find
its place among meteor enthusiasts.

316 Proceedings of the IMC, Egmond, 2016

References

Berry R. and Burnell J. (2005). ³The Handbook of
Astronomical Image Processing´, Willmann-Bell,
2nd edition.

%RURYLþND J., Spurný 3��� âHJRQ D., $QGUHLü ä��� .DF J.,
.RUOHYLü K., Atanackov J., Kladnik G., Mucke H.,
Vida D. and Novoselnik F. (2015). ³The
LQVWUXPHQWDOO\� � UHFRUGHG� IDOO� RI� WKH� .ULåHYFL�
meteorite, Croatia, February 4, 2011´. Meteoritics
and Planetary Science, 50, 1244±1259.

Brown P., Wiegert P., Clark D. and Tagliaferri E. (2016).
³Orbital and physical characteristics of meter-
scale impactors from airburst observations´.
Icarus, 266, 96±111.

Eiter T. and Mannila H. (1994). ³Computing discrete
Fréchet distancé. Technical Report CD-TR
94/64, Christian Doppler Laboratory for Expert
Systems, TU Vienna, Austria.

Fernandes L. A. F. and Oliveira M. M. (2008). ³Real-
time line detection through an improved Hough
transform voting scheme´. Pattern Recognition
(PR), Elsevier, 41:1, 2008. Pages 299±314.

Fischler M. A. and Bolles R. C. (1981). ³Random Sample
Consensus: A Paradigm for Model Fitting with
Applications to Image Analysis and Automated
Cartographý. Communications of the ACM; 24,
381±395.

Gonzalez R. and Woods R. (2008). ³Digital Image
Processinǵ. Pearson, Third Edition,
pages 627±676.

Gural P. S. (2011). ³The California All-sky Meteor
Surveillance (CAMS) Systeḿ. In Asher D. J.,
Christou A. A., Atreya P. and Barentsen G.,
editors, Proceedings of the International Meteor
Conference, Armagh, Northern Ireland, 16-19
September, 2010. IMO, pages 28±31.

Gural 3�� �������� ³$�)DVW�0HWHRU� 'HWHFWLRQ� $OJRULWKP´.
In Roggemans A. and Roggemans P., editors,
Proceedings of the International Meteor
Conference, Egmond, the Netherlands, 2-5 June
2016. Pages 96±104.

Gural 3��DQG�âHJRQ D. (2009). ³A new meteor detection
processing approach for observations collected by
the Croatian Meteor Network (CMN)´. WGN,
Journal of the IMO, 37, 28±32.

Hankey M. and Perlerin 9�� �������� ³,02�)LUHEDOO�
5HSRUWV´�� ,Q� 5DXOW J.-L. and Roggemans P.,
editors, Proceedings of the International Meteor
Conference, Giron, France, 18-21 September
2014. IMO, pages 160±162.

Jenniskens P., Gural P. S., Dynneson L., Grigsby B. J.,
Newman K. E., Borden M., Koop M. and
Holman D. (2011). ³&$06�� &DPeras for Allsky
Meteor Surveillance to establish minor meteor
VKRZHUV´��Icarus, 216, 40±61.

Jenniskens P. and Gural P. S. (2011). ³Discovery of the
February Eta Draconids (FED, IAU#427): the dust
trail of a potentially hazardous long-period
comet́ . WGN, Journal of the IMO, 39, 93±97.

Nelder J. A. and Mead R. (1965). ³A simplex method for
function minimizatioń. Computer Journal, 7,
308±313.

Samuels D., Wray J., Gural P. S. and Jenniskens P.
(2014). ³Performance of new low-cost 1/3"
security cameras for meteor surveillance´. In
Rault J.-L. and Roggemans P., editors,
Proceedings of the International Meteor
Conference, Giron, France, 18-21 September
2014. IMO, pages 66±73.

âHJRQ D. (2009). ³How many stars are needed for a good
camera calibration?́� WGN, The Journal of the
IMO, 37, 80±83.

SonotaCo, Shimoda C., Inoue H., Masuzawa T. and
Sato M. (2014). ³Observation of April alpha
Capricornids (IAU#752 AAC)́. WGN, Journal of
the IMO, 42, 222±226.

Vida '��� âHJRQ D., Gural P. 6��� 0DUWLQRYLü G. and
6NRNLü ,�� �������� ³CMN_ADAPT and
&01BELQ9LHZHU� VRIWZDUH´�� ,Q� 5DXOW J.-L. and
Roggemans P., editors, Proceedings of the
International Meteor Conference, Giron, France,
18-21 September 2014. IMO, pages 59±63.

Zhang T. Y. and Suen C. Y., (1984). ³A Fast Parallel
Algorithm for Thinning Digital Patternś.
Communications of the ACM, 27, 236±239.

=XERYLü D., Vida D., Gural 3�� DQG� âHJRQ D. (2015).
³Advances in the development of a low-cost video
meteor statioń. In Rault J.-L. and Roggemans P.,
editors, Proceedings of the International Meteor
Conference, Mistelbach, Austria, 27-30 August
2015. IMO, pages 94±97.

Proceedings of the IMC, Egmond, 2016 317

Code segment A. 3D line detector pseudo code
Function FindLines(Point_cloud, Lines_found){

 // Check if the previously found lines exceed the maximum number of lines to be found

 If (Length(Lines_found) >= Max_lines){

 Return Lines_found;

 }

 Results_list = [];

 For each point P1 in Point_cloud{

 For each point P2 in Point_cloud{

 Line = Line defined by P1 and P2;

 Distance_sum = 0;

 Point_counter = 0;

 Previous_P3 = P1;

 For each point P3 in Point_cloud{

 // Check if the point is close enough to the line

 If (Distance(Line, P3) < Distance_threshold){

 // Check if the point is too far away from the previous point

 If (Distance(Previous_P3, P3) > Gap_threshold){

 // Reject the hypothesized line if the previous point

 // was too far away from the second point that defines the line

 If (Distance(Previous_P3, P2) > Gap_threshold){

 Point_counter = 0;

 }

 Break loop;

 }

 Point_counter++;

 Distance_sum += Distance(Line, P3);

 Previous_P3 = P3;

 }

 }

 // Reject the hypothesized line if it envelops too few points

 If (Point_counter < Minimum_points)

 Continue loop;

 Average_distance = Distance_sum / Point_counter;

 Quality = Point_counter ± Distance_weight * Average_distance;

 Add Line in Results_list;

 }

 }

 // Choose the best hypothesized line

 Best_line = Line with the largest Quality in Results_list;

 Point_ratio = (Number of points in Best_line) / (Number of points in Point_cloud);

 // Remove the points of the best line from the point cloud

 Point_cloud = Point_cloud \ Points(Best_line);

 // Add the best line to results only if it covers a minimum number of frames

 If (Frame_range(Best_line) >= Minimum_frame_range)

 Add Best_line in Lines_found;

 // Iteratively find lines on the point cloud until most of points

 // in the cloud have been covered, the remaining number of points is not too low,

 // and the flag for returning just one line was not set

 If ((Point_ratio < Ratio_threshold) & (Number of points in Point_cloud > 10)

 & NOT Return_one_line)

 FindLines(Point_cloud, Lines_found);

 Return Lines_found;

318 Proceedings of the IMC, Egmond, 2016

Table 2 ± 3D line segment detector input parameters.

Name Data type Description

Point_cloud list a list of points in the point cloud, each point is defined by the (X, Y, Z) tuple

Max_lines integer the maximum number of lines which the algorithm should find

Distance_threshold float the radius of the cylinder around the hypothesized line

Gap_threshold float the maximum distance between subsequent points which make the line

Minimum_points integer the minimum number of points a line should have to be accepted

Distance_weight float
the weight by which the point-line distance will be multiplied, a larger value
of the parameter yields compact lines with a smaller amount of points, while
a smaller value yields dispersed lines with more points

Minimum_frame_range integer
minimum length of the Z axis component, i.e. the minimum number of
frames the line segment covers

Ratio_threshold float

minimum ratio between the found and the total points in the point cloud until
the algorithm is stopped, e.g. if the ratio is 0.7, the algorithm will run until at
least 70% of points are joined to a certain line, or no line satisfies the
minimum requirements to be accepted

Return_one_line boolean if True, the algorithm will not do an iterative search, but return only one line

Table 3 ± 3D line segment detector output description.

Name Data type Description

Lines_found list a list of lines found in the point cloud

Queuing to get some speaking time ZLWK�.RUDGR�.RUOHYLü��OHIW). Sirko Molau
ZDLWLQJ�IRU�'HQLV�9LGD�WR�ILQLVK«

View publication statsView publication stats

https://www.researchgate.net/publication/306323370

