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This work aims to overcome the current price threshold of meteor stations which can sometimes deter meteor 
enthusiasts from owning one. In recent years small card-sized computers became widely available and are used for 
numerous applications. To utilize such computers for meteor work, software which can run on them is needed. In 
this paper we present a detailed description of newly-developed open-source software for fireball and meteor 
detection optimized for running on low-cost single board computers. Furthermore, an update on the development 
of automated open-source software which will handle video capture, fireball and meteor detection, astrometry and 
photometry is given. 

1 Introduction 

With the advent of low-cost sensitive video security 
cameras, amateur meteor enthusiasts quickly embraced 
this technology and noted its potential for meteor 
surveillance (Gural and âHJRQ�� ������� 7KH� WHFKQRORJ\�
has proven capable of delivering quality data, such that a 
meteorite recovery was possible based on an amateur 
PHWHRU� QHWZRUN� �%RURYLþND� HW� DO��� ������ XVLQJ� VXFK�
cameras. As the price of these cameras has continued to 
decline, falling below 50 USD (Samuels et al., 2014), the 
main price component of a meteor station became the 
computer for recording and processing the data. As the 
computer¶s price is an order of magnitude larger than that 
of a single camera, the question of replacing it with a 
cheaper alternative naturally arises. The possible 
candidates were found in the form of low-cost single-
board computers. A set of these computers were tested in 
�=XERYLü�HW�DO���������DQG�LW�ZDV�FRQFOXGHG�WKDW�D�YLDEOH�
alternative exists, namely the Raspberry Pi 2 device 
which seemed affordable and powerful enough to serve 
the purpose. Furthermore, it was concluded that a low-
cost meteor station using the Raspberry Pi 2 computer 
could be built for about 150 USD, including all 
components. While the hardware is not the main topic of 
this paper, it is worth mentioning that a new generation of 
the Raspberry Pi has recently been released, the 
Raspberry Pi 3 which offers up to 50% more computing 
power1 than the previous generation. Although the 
hardware options are plentiful, there were no software 
                                                           
1 https://www.raspberrypi.org/magpi/raspberry-pi-3-specs-
benchmarks/ 

solutions capable of running on such devices. Their ARM 
CPU architecture and the Unix-based operating system 
create a unique problem, where to successfully compile 
and use meteor processing pipeline software, one needs to 
obtain its source code and adapt it to run under such a 
V\VWHP�FRQILJXUDWLRQ��7KH�ZRUN�LQ��=XERYLü�HW�DO���������
presented software which works on Raspberry Pi 2 
devices, records video from the camera, compresses it 
into the CAMS FTP format (Gural, 2011) and performs a 
rudimentary real-time fireball detection. 

In this paper new and improved algorithms are presented 
which include complete procedures for real-time fireball 
detection, meteor detection, star extraction and data 
calibration. All software is open-source and available on 
the project's GitHub page2. The authors believe that 
meteor surveillance is a matter of great importance, and 
as such it should be available to all. By making the 
software open-source, anyone can use the code, 
contribute to it and more experienced contributors can 
improve it significantly. The Python programming 
language was chosen as the main development language, 
while the computationally intensive parts of the code are 
written in C++ . The choice of this combination of 
programming languages is common for astronomical 
purposes3 in the recent years. 

 

                                                           
2 https://github.com/CroatianMeteorNetwork/RMS 
3 http://python-in-astronomy.github.io/ 
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Figure 1 ± A block diagram of the developed software. 

 

2 Software overview 

An overview of the developed software is shown on 
Figure 1. 

The raw frames from the grabber are compressed in the 
CAMS FTP compression format (Gural, 2011). The 
compression procedure compresses 256 raw video frames 
into 4 images: maximum pixel value image (maxpixel), 
average pixel value image excluding the maximum 
(avepixel), standard deviation pixel value image 
excluding the maximum (stdpixel) and an image which 
tracks the time of the occurrence of the maximum pixel 
value (maxframe). The time, i.e. the frame number of the 
maximum pixel value is encoded as a byte valued image 
level. If a certain pixel has several maximum values 
occurring at different frames, the frame number which is 
stored in the maxframe image is randomly chosen to 
distribute noise peaks uniformly in time. 

 

Figure 2 ± Fireball maxpixel image (top) and several 
reconstructed frames showing compression artifacts (below). 

 
While the aforementioned compression procedure works 
sufficiently enough to preserve meteors of moderate 
brightness, certain problems can occur with very bright 
fireballs. As the fireball saturates the CCD sensor and 
leaves a path of saturated values along its track, the 
compression algorithm only takes a single saturated value 
encoded in time. The effect of this is visible in Figure 2. 
The top of the figure shows the maxpixel image, while 

the bottom shows several reconstructed video frames. It 
can be seen that the reconstructed frames suffer from 
compression artifacts which can impair the precision of 
the centroid determination as information about the real 
position of the fireball is lost. 

To counter this problem a real-time fireball detector was 
developed to enable saving the raw video frames while 
they are still in the temporary memory buffer. Fireballs 
have orders of magnitude higher signal-to-noise ratio in 
respect to the background than meteors of moderate 
brightness, and thus the authors believe that a dedicated 
fireball detector provides more consistent results than a 
combined approach. Furthermore, a fireball detection 
algorithm is simpler and faster, thus satisfying the real-
time requirement. Fainter and moderate brightness 
meteors are detected on the compressed data with more 
elaborated methods offline, as they generally do not 
suffer from compression artifacts. 

Besides fireball detection, to make a low-cost meteor 
station competitive with the existing solutions, an option 
to detect fainter meteors is highly desirable. As there are 
constraints on the computing power, the algorithm needs 
to be fast, reasonably robust and sensitive enough to 
detect meteors not detected by the fireball detector. To 
consider how fast the algorithm actually must be, Worst 
Case Execution Time and the maximum average time 
which can be spent per each image for meteor detection 
must be calculated. 

To use the full power of the RPi computer, all 4 of its 
cores are employed. The capturing process has the 
highest priority and it needs to run in real-time, thus one 
core is completely dedicated to this task. Two cores are 
dedicated to video compression and real-time fireball 
detection. The compression and fireball detection process 
is serial, meaning that fireball detection is run after the 
compression. Thus each of these two cores run the same 
serial process, but the input data stream is alternated 
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between the two, to double the available processing time 
per single serial procedure. The one remaining core runs 
star extraction and meteor detection. Once the capture 
process is finished, all 4 cores run star extraction and 
meteor detection procedures. Finally, after the detection 
procedures finishes, astrometry and photometry 
procedures are performed. 

With the core utilization laid out, the total available 
processing time for star extraction and meteor detection 
can be calculated. The longest night of the year at latitude 
50° north is about 16 hours, which translates into 5625 
CAMS format FF files at 25FPS and 256 frames per file. 
With the proposed core utilization, during the longest 
night the algorithm will have 16 hours available during 
the night on one core, and the remaining 8 hours on 4 
cores. Thus the total computation available is 48 hours 
(not taking into account system housekeeping and post-
processing). This translates to the maximum average time 
which the algorithm can spend on one FF file of about 30 
seconds. Furthermore, taking into account that the 
Raspberry Pi 2 is at least an order of magnitude less 
powerful than contemporary normal-sized computers, the 
average maximum time the algorithm running on a 
normal-sized computer can spend on each image is 
around 3 second. As this time is quite short, the algorithm 
should make an effort to reduce the number of analyzed 
files early on. 

3 Fireball detector 

An initial version of the fireball detection algorithm was 
SUHVHQWHG� LQ� �=XERYLü� HW� DO��� ������� ,Q� WKLV� SDSHU� DQ�
improved version of the algorithm is presented - the 
algorithm was re-implemented in Cython4 for faster 
execution and input parameters were fine tuned. 
Furthermore, the algorithm is discussed in more detail 
below. 

The input data to the detector are the FTP compressed file 
and raw video frames. To detect significant rises in image 
intensity over the background, image thresholding is 
performed with the following operation: 

6DNAODKH@:I=Tá =RCá OP@@AR;

L � \SDEPAá �:��� P =RC E -5 ® OPP@AR;�¬�:��� P vr;

>H=?Gá KPDANSEOA
 

The K1 parameters determines how many standard 
deviations above the background level the maximum 
intensity must be to be considered to be part of the 
fireball, i.e. a white pixel. The chosen value was K1 = 4, 
based on numerous experiments on fireball images. 
Furthermore, the minimum intensity level of the pixel 
must be 40. Figure 3 shows the influence of the varying 
value of the K1 parameter. As it can be seen on the given 
figure, values of K1 below 4 produce too many white 
pixels. Values above 4 can produce black regions in the 
middle of the fireball ± these are caused by the very high 
standard deviation values in the middle of the fireball. 

                                                           
4 http://cython.org/ 

When these high values are multiplied by the K1 
parameter of a higher value, the =RC E -5 ® OPP@AR 
expression can exceed the maximum digitization value of 
255, thus making the maximum image value unable to 
pass this threshold. If one requires such a high threshold, 
it is possible to clip the calculated value to 254 and thus 
ensure saturated pixels get through. As this would 
introduce a slight overhead in computation time, this 
feature was not implemented. 

Following this procedure, the image pixels are now either 
white (pixels of interest) or black (background). As the 
CAMS FTP format image contains information about the 
occurrence of every maximum pixel value, the 
thresholded image can be shown as a 3D point cloud, XY 
components representing the image axes, and Z 
component representing the time axis. The resulting 3D 
point cloud can be seen in inset a) of Figure 4. To further 
reduce the noise and reduce the total number of points of 
interest, a subsampling procedure is performed. The point 
cloud is sampled by 16 × 16 × 256 bins. A secondary 
thresholding is performed which is based on counting the 
number of points in each bin. If the number of points is 
less than 8, the bin is rejected. The result is shown in 
inset b) of Figure 4. As fireballs can often have bright 
flashes, an algorithm which removes the flashes (i.e. 
slices at the time axis which have considerably more 
points than average) is applied to the 3D point cloud. An 
example of such 3D point cloud is given on the inset b) of 
Figure 4, where a plane of points at frame 90 can be 
noticed. The flash filter looks for such planes in the data, 
i.e. the frames when the fireball 3D point cloud has at 
least 10x more points than the median number of points 
per frame. The frame is removed and the result is shown 
in inset c) of Figure 4. 

After the described preprocessing, it is obvious from 
Figure 4 inset c) that the fireball is represented as a line 
segment in 3D space. Thus a new line segment detection 
algorithm has been independently developed and 
implemented in Cython. First, the points are sorted by 
their respective frames. Then the algorithm pairs each 
point with each other to hypothesize a line. Each 
hypothesized line is tested for the number of points in its 
neighborhood. The neighborhood is defined as cylinder 
around the hypothesized line (with a fixed radius). The 
algorithm evaluates each hypothesized line by the number 
of points and their distances from the line by producing a 
weighted score. The closer the point is to the line, the 
higher the score it has. Furthermore, if the algorithm 
determines that there is a discontinuity in the 
concentration of points, that particular hypothesized line 
is rejected as the goal is to find compact line segments. 
The line with the best cumulative score is chosen, its 
points are removed from the point cloud and the 
algorithm runs recursively until all acceptable lines are 
found. The pseudo code of the algorithm, as well as the 
description of the input parameters, are given in Code 
segment A. The line segment detection algorithm has a 
time complexity of O(N3) in the worst case, and given  
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Figure 3 ± Thresholding the fireball with various values of K1. 

 

Figure 4 ± Steps in the fireball detection thresholding procedure. 

 

the restrictions on the computing time available, the total 
number of points which are fed into the algorithm was 
limited to 1000. If the point cloud contains more points, 
1000 points are randomly chosen. In principle, the newly 
developed line segment detector is very similar to 
RANSAC (Fischler and Bolles, 1981), although it contains 
several key differences which enable it to search 
specifically for line segments, in contrast to unbounded 
lines. After the fireball is located, raw video frames 
containing the fireball are pulled from memory and are 
stored on disk for later use. 

The performance of the fireball detector was evaluated on 
about a hundred examples of fireball images from the 
Croatian Meteor Network archives. The brightness of 
successfully detected events ranges from fireballs which 
saturated half the image, to 0th magnitude meteors. After 
examining the results, the authors have concluded that the 
fireball detector is robust and suitable its purpose. 

4 Meteor detector 

To reduce the total processing time, the star extraction 
procedure (described in the next section) is run before 
meteor detection. If the number of detected stars is too 
low, meaning that the sky is not clear, the meteor 
detection algorithm will not be run at all on the given 
image. When the skies are clear, the processing flow will 
include the detection procedure. 

 

As the CAMS compression format saves the maximum 
and the average value of each pixel during 256 frames, as 
well as its standard deviation, thresholding the image to 
find events brighter than the average is done by applying 
the following operation on the image: 

6DNAODKH@:I=Tá =RCá OP@@AR;

L � \SDEPAá ���� P =RC E -5 ® OPP@AR E ,5
>H=?Gá KPDANSEOA

 

K1 is a scaling factor which determines how many 
standard deviations above average the event should be, 
while J1 is an absolute factor which adds to the total level 
threshold by adding a minimum background level. The 
combination of factors K1 = 1.7, J1 = 9 proved to be 
optimal for discriminating meteors from the background 
noise. 

After the image is thresholded, the algorithm checks the 
ratio between the thresholded and the total area of the 
image. If the thresholded part covers more than 5% of the 
image, the image is rejected. The reason for this is that 
moonlit clouds can often cause many above average pixel 
exceedances, which in turn slows down the algorithm. 

As one compressed image contains information of about 
256 frames, this allows reconstructing the whole video 
from the compressed file. To reduce noise, the whole 
256-frame block is not analyzed at once, but only a 64 
frame ³windoẃ  is reconstructed from the FF file. The  
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Figure 5 ± Frame reconstruction and frame ³windowś . The meteor appears on frames from 211 to 228. 

 

starting frame of each reconstructed window is shifted by 
32 frames, producing 7 such windows covering frame 
ranges of 1±64, 32±96, 64±128, 96±160, 128±192, 
160±224, and 192±256, thus the windows are overlapped 
LQ� WLPH� WR� DYRLG� ³OHDNDJH´� RI� PHWHRUV� VSDQQLQJ�
processing windows. The mentioned ³windoẃ  is not a 
set of 64 actual frames, but the maxpixel of the short 
window block. Figure 5 illustrates the described 
SURFHGXUH�DQG�VKRZV�LQGLYLGXDO�IUDPH�³ZLQGRZV´� 

On each such window a set of image morphological 
operations (Gonzales and Woods, 2008) is performed. 
First, morphological cleaning is performed; a process 
which removes isolated pixels. This operation removes 
most of the noise on the image. Figure 6 illustrates the 
described procedure. 

0 0 0  0 0 0 

0 1 0 Æ 0 0 0 

0 0 0  0 0 0 

Figure 6 ± Morphological cleaning. 

Then a morphological bridging operation is performed 
which connects pixels which are on the opposite sides 
and all other pixels are 0. This operation helps to connect 
disconnected features on the image, such as broken lines. 
Figure 7 illustrates the described procedure for 1 of 4 
possible pixel orientations. 

0 0 1  0 0 1 

0 0 0 Æ 0 1 0 

1 0 0  1 0 0 

Figure 7 ± Morphological bridging. 

After that, a morphological closing is performed. Closing 
is a structured filling in of hollow image features which 
consists of two sub-operations: morphological dilation 
followed by erosion, using the same structuring element 
for both operations. This operation helps to fill in all the 
possible gaps in the thresholded meteor. 

To prepare the image for line identification, all possible 
lines must be as thin as possible. Thus a Zhan-Suen 
thinning algorithm (Zhang and Suen, 1984) is applied to 
the image which skeletonizes the image i.e. makes all 
possible meteors on the image to appear as long thin 
lines. 

Finally, a morphological cleaning is performed again to 
remove all noise on the image remaining after thinning. 
Now the image is ready to run the line detection 
algorithm. Figure 8 shows an example of the maxpixel 
image (left), the image after thresholding (middle) and 
the image after the complete pre-processing procedure 
(right). 

The image pre-processing procedure was implemented 
due to the peculiar operation of the chosen line finding 
algorithm. After a period of experimentation, it was 
decided to settle on the Kernel-Based Hough Transform 
(KHT) (Fernandes and Oliveira, 2008) due to its superior 
speed and performance, which was necessary due to the 
low computation power of single board computers. The 
authors of the KHT made it open-source which perfectly 
aligned with our needs and software development 
philosophy. The preprocessed images are fed into the 
algorithm and it returns all line candidates on the image. 

After all lines have been retrieved on all 64-frame 
³windowś , similar lines are identified using the Discrete  
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Figure 8 ± Maxpixel image of a meteor (left), thresholded image (middle), image after preprocessing (right). 

 

Fréchet distance (Eiter and Mannila, 1994) as the 
similarity measure and are averaged. During the line 
segment merging, the exact ³windowś  on which the line 
appears are tracked, thus the approximate time of the line 
appearance is known. In this point the algorithm has a list 
of candidate lines which need to be confirmed as meteors. 
If this list is empty, meaning no lines satisfying the given 
parameters were found, the procedure is aborted and the 
image is rejected and it is considered to not contain any 
meteors. On the other hand, if there are lines in the list, 
the algorithm proceeds to confirm that the found lines 
could be meteors. 

The next phase of the algorithm determines if the 
candidate line contains a possible meteor by determining 
if the line propagates through time. First, as the 
approximate time of the line appearance is known as a 
range of frames between which the candidate line 
appeared, this fact is used to reconstruct the ³windoẃ  
image using the given frame range. Then a strip of about 
50 pixels in width is extracted around the line. In CAMS 
FTP format, each pixel has an assigned time component 
of its maximum value during the 256 frame period, 
meaning that each pixel in the strip is given a time 
component. Thus a 3D point cloud is obtained - a line 
propagating through time should be a compact line in this 
point cloud, thus the same algorithm as the one in fireball 
detection is used, although with a different set of 
parameters to allow for smaller lines to be detected. The 
algorithm determines the exact starting and ending frames 
of the propagating line, as well as the true orientation of 
the line. Any event shorter than 4 frames (i.e. 0.16 
seconds at 25 frames per second) is rejected due to a large 
number of such short events detected during cloudy 
weather, which can considerably slow down the 
algorithm. This also means that all meteors shorter than 4 
frames are not detected. In the case of future 
improvements in available computational power, this 
restriction can be easily lifted. 

After the algorithm determines the exact duration (i.e. the 
beginning and ending frames) of the event, centroiding is 
performed by reconstructing each frame of the event and 
again extracting a strip around the event. A center-of-
mass calculation is performed, using pixel intensities as 
weights (Berry and Burnell, 2005). As the video camera 
employed produces an interlaced signal, a deinterlacing 
procedure is performed beforehand ± centroiding is done 
separately on odd and even image rows, thus giving a 
half-frame time resolution. Finally, the obtained centroids 
are filtered by rejecting those which considerably deviate 
from the fitted trend line. Figure 9 shows the marked 
centroids of the meteor shown on Figure 8. The results of 
the detection procedure are written out as a CAMS 
FTPdetectinfo file format, so that the results can be 
processed with the existing (although proprietary) CAMS 
procedures. 

 

Figure 9 ± A detected meteor with marked centroids. 

 
The performance of the meteor detector was evaluated on 
about a hundred carefully chosen meteor images. The 
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Table 1 ± Comparison of meteor detection performance between the new detector and the CAMS detector. 

Type Night ID 
No. 
files 

Total proc. 
time (sec) 

Time per 
file (sec) 

Meteors detected False positives 

New CAMS New CAMS 

1 VIB_20160419 3211 29390 9.15 14 11 53 18 

2 OSE_20160417 3269 7770 2.37 0 2 9 61 

3 VID_20160417 3263 37100 11.36 0 0 1679 304 

4 OSO_20160419 3233 9430 2.91 2 4 36 2941 

5 OSE_20160501 2950 2590 0.87 0 0 0 318 

 TOTAL 16 17 1777 3642 

 

goal was to sample a wide variety of meteors of varying 
brightness, duration and velocity to test the algoriWKP¶V�
GHWHFWLRQ�SHUIRUPDQFH��7KH�DOJRULWKP¶V�SDUDPHWHUV�ZHUH�
tuned until all chosen meteors were successfully detected. 

Furthermore, the detector was tested on 5 full nights, each 
containing about 3000 individual image files. The night 
types were chosen to be representative of the conditions 
encountered during the year:  

1. A clear and Moonless night with several meteors; 
2. A cloudy night with the presence of the Moon with 

very few meteors; 
3. A night with fast moving clouds with the presence of 

the Moon; 
4. A rainy night in a light polluted environment, 

resulting in visible falling raindrops; 
5. A cloudy and stormy night with the presence of 

lightning. 

The goal of these data was to test the algorithms 
robustness and false positive rate. The results were 
compared to those obtained by the MeteorScan detector 
employed as a part of the CAMS processing pipeline 
(Jenniskens et al., 2011) in FTP_CaptureAndDetect 
version 1.6 software.  The results of comparison for full 
nights are given in Table 1. 

Compared to the CAMS detector, the total number of 
false positives was considerably smaller. It was 
discovered that this was caused by the condition that the 
detection procedure is run only when a minimum number 
of stars is present on the image, thus eliminating most of 
the detections on clouds and during daytime. On the other 
hand, the new detector produced lots of false positives 
when part of the image contained fast moving moonlit 
clouds while the other part was clear. This behavior will 
be addressed in the future by introducing cloud mitigation 
techniques. 

The total number of detected meteors was also smaller. 
After careful comparison, it was determined that the 
missing detections are those meteors shorter than 4 
frames in duration (which are automatically rejected by 
the new detector) and meteors between the clouds. On the 
other hand, during clear nights the new detector 
performed similar to the CAMS detector. Real 
differences cannot be determined without a detailed 
comparison, but it is worth mentioning that in several 

cases the new detector detected more meteors than the 
CAMS detector (with the detection parameters used by 
the Croatian Meteor Network). Furthermore, on all tested 
data the algorithm never exceeded the maximum average 
processing time per image. The maximum average 
processing time per image for the tested nights on the 
Raspberry Pi 2 device was about 11.5 seconds, including 
both the star extraction and meteor detection. 

Although the detection rate was similar to the CAMS 
detection procedure, further analysis is needed. But based 
on these early results, it can be concluded that under the 
circumstances and the given computational power the 
newly developed detector is performing satisfactory for 
the needs of an amateur meteor enthusiast. Room for 
improvement still exists and it is hoped that a more 
successful algorithm will be implemented in the future, 
most probably the one given in (Gural, 2016). 
Furthermore, the algorithm should be tested on even more 
data to confirm its performance. 

As the system is fully automated by design, a manual 
meteor confirmation procedure is not a part of the 
processing pipeline. False meteor detections will be 
rejected during orbit estimation as they will not form 
realizable orbit solutions. Nevertheless, as the results are 
CAMS compatible, it is possible to perform manual 
confirmation using the available software solutions, such 
as the CMN_binViewer (Vida et al., 2014). 

5 Star extraction 

To astrometrically calibrate the intrinsic (field distortion) 
and extrinsic (coordinate transformations) parameters of 
the camera, a set of stars from each recorded image is 
needed. Thus a robust algorithm for detecting stars on the 
recorded FF files was developed. The algorithm takes the 
³average pixeĺ image from the FF file and first 
calculates the mean intensity of the image. To quickly 
check if the algorithm should proceed at all, the mean 
image value is compared to a predefined threshold. If the 
image is too bright (e.g. an image recorded during the 
day), it is rejected. If the image passes this test, the 
inverse hyperbolic sine function is applied to all pixels on 
the image to adjust levels of the image so that the stars 
become more prominent. The maximum image filter (i.e. 
morphological erosion) is applied to the image; while on 
a copy of the original image a minimum image filter (i.e. 
morphological dilation) is applied. The difference of the 2 
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images thresholded by a fixed threshold value leaves only 
the areas of the image which are considerably brighter 
than their background. These peaks are detected and the 
center of mass is calculated for each on the original 
average pixel image, giving the approximate coordinates 
of the candidate stars. 

To refine the results, and to better determine if the 
candidate is really a star or not, point spread function 
(PSF) fitting is performed by fitting a 2D Gaussian 
function to an area of 9 × 9 pixels centered around each 
candidate star using the least squares regression. The 
authors are aware that a 2D Gaussian does not perfectly 
represent the real PSF of the star, but for the purposes in 
video meteors which have a lower photometric 
resolution, a pure Gaussian PSF is assumed. Initial PSF 
parameters are approximated beforehand so that real stars 
converge quickly to a solution. Thus if the fitting does 
not converge in a limited number of iterations, the 
candidate is rejected. This procedure has proven to be a 
good discriminator between real stars and spurious 
detections. Furthermore, if the PSF fitting procedure is 
completed successfully, the covariance matrix of the PSF 
is evaluated. If the PSF is too narrow, the candidate star 
is rejected as a hot pixel (i.e. bright dot defect). Finally, 
as a consequence of fitting the PSF, the location of each 
star is known very accurately and its precision is on a 
subpixel level. The intensity of each star is calculated as a 
volume under the fitted PSF. 

Finally, the stars found are written in the CAMS 
CALSTARS format, so that the calibration procedure can 
be done using CAMS-compatible procedures if needed. 

The results of the new algorithm were compared to the 
results of the CAMS FTP_CalStarExtractor software. It 
was concluded that the newly developed algorithm yields 
very little false positives, only about 5%, while the 
FTP_CalStarExtractor often detects more false positives 
than real stars. Furthermore, the proposed algorithm 
yields virtually no detections during cloudy weather, thus 
its results can be used to determine weather conditions in 
the time of recording. When comparing the number of 
true positives between the two algorithms, the new 
algorithm detects about 90% of stars present in the 
CAMS data. The average number of detected stars per 
image during the periods of clear skies in the sample 
moderate field of view data was about 30. Combining 
frames from the same camera over the course of the night 
yields an average total number of detected stars in the 
tens of thousands. 

6 Astrometry and photometry 

procedures 

To transform the image coordinates of the meteor 
detection to celestial coordinates, an astrometric plate 
solution of the associated camera is needed. The initial 
plate constants (field center, scale, field distortion 
parameters) are first manually estimated by knowing the 
pointing direction of the camera and its optical properties. 
To further refine the plate constants, the detected stars 

need to be matched with stars from a star catalog. For this 
purpose, the Yale Bright Star Catalog5 is used. To have a 
better quality of the solution and to cover a larger part of 
the focal plane, stars detected on images all throughout 
the night are used. As the total number of all stars in a 
single night can be in the tens of thousands, which can be 
hazardous for the computational time needed to calculate 
an astrometric solution, a random sample of images is 
taken where images with more stars have a greater 
probability of being chosen. At least 500 stars are needed 
to continue with the calibration, the number being chosen 
RQ�WKH�EDVLV�RI�ILQGLQJV�LQ��âHJRQ�������� 

The image coordinates of the chosen stars are 
transformed to celestial coordinates using the initial 
calibration parameters. The transformed coordinates are 
then matched to their nearest neighbors among the 
catalog values in celestial coordinates, but only if the 
coordinates are closer than a predefined angular distance 
threshold. The distance and the direction of the shift 
between each of the matched stars are recorded, the 
median values are calculated and the correction is applied 
to the plate constants. The procedure is repeated by 
reducing the angular distance threshold during each 
iteration, until the desired match is achieved. The 
matching metric is evaluated as a quotient of the standard 
deviation of the shift between the detected and catalog 
stars and the total number of matched stars. Thus a better 
solution is one that yields a smaller value. 

Once the initial parameter refinement is complete, a more 
elaborate refining of the field center position is performed 
using the Nelder-Mead method (Nelder and Mead, 1965). 
Right ascension and declination of the center is adjusted 
until the algorithm converges to a stable solution ± the 
same evaluation method is used as in the initial 
refinement procedure. Next, the distortion parameters are 
also refined using the same above-mentioned procedures. 
The image distortion is estimated by 3rd order 
polynomials ZLWK���H[WUD�³UDGLDO�GLVWRUWLRQ´�WHUPV�LQ�ERWK�
X and Y directions, albeit with different coefficient 
values: 

Bë:Tá U; L T E �=5 E =6T E �=7U E =8T6 E =9TU E =:U6
E =;T7 E =<T6U E ==TU6 E =54U7
E =55T¥T6 E U6 E =56U¥T6 E U6 

Bì:Tá U; L U E �>5 E >6T E �>7U E >8T6 E >9TU E >:U6
E >;T7 E ><T6U E >=TU6 E >54U7
E >55T¥T6 E U6 E >56U¥T6 E U6 

The extra terms in the polynomials were first used as a 
part of the Croatian Meteor Network calibration 
procedures, but have been unpublished until now. During 
the initial development of the CMN procedures it was 
found that the modified polynomials produce smaller 
residuals compared to the ordinary 3rd order polynomials. 
This hypothesis has been tested again before the final 
implementation in this software and it was found that the 

                                                           
5 http://tdc-www.harvard.edu/catalogs/bsc5.html 
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proposed equations produce significantly smaller 
standard deviations in the fitted star positions than the 
ordinary third order polynomials. The theoretical 
background behind the reasons of such behavior was not 
explored, that will be a topic of some future work. 

After the astrometry parameter estimation is done and if 
the calibration was successful, a photometric calibration 
procedure is performed. Instrumental intensities of 
matched stars are compared to the apparent visual 
magnitude catalog values of said stars. A regression 
procedure is performed to fit the well-known intensity vs. 
magnitude function (Berry and Burnell, 2005): 

I5 L �Ftäw ���54 %5 E täw ���54 %6 EI6 

where m1 is the calculated magnitude, C1 is the input 
intensity, while C2 and m2 parameters are fitted from the 
abovementioned data. It is worth noting that the 
photometric procedures are very basic and with no regard 
to spectral sensitivity of the camera. Furthermore, no 
correction for saturated pixel values is performed. This 
part of the calibration procedure requires further work 
and improvement, which is hoped to be done in the 
future. Finally, meteor detections are converted from the 
image plane coordinates to celestial coordinates using the 
estimated plate constants and intensities are converted to 
apparent magnitudes. 

The results of the proposed astrometric calibration 
procedure were compared to the results of the existing 
CMN calibration procedure. The new algorithm produced 
an order of magnitude better results, although results of 
the subsequent runs on the same dataset varied slightly 
because of the random sampling of the images from 
which the stars are used. 

7 Discussion 

The authors believe it is worth discussing the benefits 
that an automated low-cost meteor station could provide. 
Lowering the starting price of a meteor surveillance 
system would mean that existing networks could be 
easily expanded, as the human resources and a certain 
level of expertise exists among already organized groups. 
Furthermore, new networks could be easily formed with 
very little financial investment, meaning that meteor 
science would be available to a wider audience, 
especially in less than well-off nations. The total effect 
would be a considerable rise in the atmospheric collecting 
area and longitudinal coverage. An educational aspect 
should also be considered ± students could be introduced 
to astronomy, computer and data science by installing 
such a system on their school and make them involved in 
every step of its operation. Moreover, scientists from 
other fields could recognize the practicality of a self-
contained system with a video camera and repurpose it 
for their needs, such as bird watching or monitoring 
atmospheric phenomena. 

 

If the project is favorably seen by a larger audience 
willing to set up a network of such systems, the authors 
believe that data produced by this hypothetical network 
using open-source software should be publically 
available. The usual arguments for keeping the data 
closed, such as the cost of the developed system, no 
longer justifies not publishing detailed data in this case, 
and no time is spent on manual processing as the system 
is fully automated. A similar open database exists in the 
form of the IMO Fireball Report (Hankey and Perlerin, 
2014) and the authors hope that in the future more video 
meteor data will be open and the methods of its 
generation will become more transparent. 

Finally, the benefits of a wide-spread meteor network to 
actual meteor science could be immense. Most meter-
scale impactors are not observed optically, as the existing 
fireball and meteor networks cover only a fraction of the 
sky and most are only detected with non-optical methods 
which lack astrometric precision and show certain biases 
towards faster objects (Brown et al., 2016). In the recent 
years there have been reports of short meteor shower 
outbursts which were observed only by one or two meteor 
networks, namely the February Eta Draconds (Jenniskens 
and Gural, 2011) and April alpha Capricornids (SonotaCo 
et al., 2014). These occurrences lead to the question 
whether some meteor shower outbursts were not noticed 
due to overcast weather or the nonexistence of a meteor 
network beneath the skies where the outburst was visible. 

8 Conclusion 

A complete open-source software solution for video 
meteor capture and detection on the RaspberryPi 2 
single-board computer has been developed and described 
in detail. First, a set of requirements were set which such 
a station should meet. Next, real-time compression to 
CAMS FTP format and a fireball detection algorithm 
were described. Also, a newly-developed meteor 
detection algorithm was described and evaluated with the 
conclusion that it suits the needs of a low-cost meteor 
station. The pseudo code of a line segment detector in a 
3D point cloud used by both fireball and meteor detectors 
was given. Furthermore, a star extraction algorithm which 
uses a Gaussian PSF fitting to stars was developed and 
tested with very positive results. Finally, the astrometry 
and photometry procedures were implemented and 
discussed. 

While the individual segments of software described in 
this paper performed within the requirements on sample 
data, system tests during an actual night of meteor 
recording still need to be performed. Also, the software 
needs to be made more user-friendly and the 
documentation is to be expanded. It is the hope of the 
authors that the number of contributors to this project will 
rise in the future and that the developed system will find 
its place among meteor enthusiasts. 
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Code segment A. 3D line detector pseudo code 
Function FindLines(Point_cloud, Lines_found){ 

 

  // Check if the previously found lines exceed the maximum number of lines to be found 

  If (Length(Lines_found) >= Max_lines){ 

    Return Lines_found; 

    } 

 

  Results_list = []; 

 

  For each point P1 in Point_cloud{ 

    For each point P2 in Point_cloud{ 

      Line = Line defined by P1 and P2; 

      Distance_sum = 0; 

      Point_counter = 0; 

      Previous_P3 = P1; 

 

      For each point P3 in Point_cloud{ 

        // Check if the point is close enough to the line 

        If (Distance(Line, P3) < Distance_threshold){ 

 

          // Check if the point is too far away from the previous point 

          If (Distance(Previous_P3, P3) > Gap_threshold){ 

            // Reject the hypothesized line if the previous point  

            // was too far away from the second point that defines the line 

            If (Distance(Previous_P3, P2) > Gap_threshold){ 

              Point_counter = 0; 

              } 

            Break loop; 

          } 

          Point_counter++; 

          Distance_sum += Distance(Line, P3);  

          Previous_P3 = P3; 

        } 

      } 

 

      // Reject the hypothesized line if it envelops too few points 

      If (Point_counter < Minimum_points) 

        Continue loop; 

 

      Average_distance = Distance_sum / Point_counter; 

      Quality = Point_counter ± Distance_weight * Average_distance; 

 

      Add Line in Results_list; 

    } 

  } 

 

  // Choose the best hypothesized line 

  Best_line = Line with the largest Quality in Results_list; 

  Point_ratio = (Number of points in Best_line) / (Number of points in Point_cloud); 

   

  // Remove the points of the best line from the point cloud 

  Point_cloud = Point_cloud \ Points(Best_line); 

 

  // Add the best line to results only if it covers a minimum number of frames 

  If (Frame_range(Best_line) >= Minimum_frame_range) 

    Add Best_line in Lines_found; 

   

  // Iteratively find lines on the point cloud until most of points  

  // in the cloud have been covered, the remaining number of points is not too low, 

  // and the flag for returning just one line was not set 

  If ((Point_ratio < Ratio_threshold) & (Number of points in Point_cloud > 10)  

       & NOT Return_one_line) 

    FindLines(Point_cloud, Lines_found); 

  

  Return Lines_found; 
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Table 2 ± 3D line segment detector input parameters. 

Name Data type Description 

Point_cloud list a list of points in the point cloud, each point is defined by the (X, Y, Z) tuple 

Max_lines integer the maximum number of lines which the algorithm should find 

Distance_threshold float the radius of the cylinder around the hypothesized line 

Gap_threshold float the maximum distance between subsequent points which make the line 

Minimum_points integer the minimum number of points a line should have to be accepted 

Distance_weight float 
the weight by which the point-line distance will be multiplied, a larger value 
of the parameter yields compact lines with a smaller amount of points, while 
a smaller value yields dispersed lines with more points 

Minimum_frame_range integer 
minimum length of the Z axis component, i.e. the minimum number of 
frames the line segment covers 

Ratio_threshold float 

minimum ratio between the found and the total points in the point cloud until 
the algorithm is stopped, e.g. if the ratio is 0.7, the algorithm will run until at 
least 70% of points are joined to a certain line, or no line satisfies the 
minimum requirements to be accepted 

Return_one_line boolean if True, the algorithm will not do an iterative search, but return only one line 

 

Table 3 ± 3D line segment detector output description. 

Name Data type Description 

Lines_found list a list of lines found in the point cloud 
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